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Abstract. It is shown that the effective Lagrangian for the dynamics of superfluid He3 is described
by the language of theSU(2) chiral nonlinear sigma model in a unified way for A and B phases.
The starting Lagrangian is assumed to be the nonlinear Schrödinger type. Here the key concept is to
write the order parameter in terms of the rotation matrix from the intrinsic states and rewrite it with
the equivalentSU(2)matrix. The resultant effective Lagrangian is thus transcribed to the nonlinear
sigma model for which the field takes the value on theSU(2) manifold. The superfluid velocity
of Mermin–Ho type is discussed in this representation and shown to be given by the topological
quantity ofSU(2).

1. Introduction

The superfluid He3 is known to be an exotic form of matter due to the p-wave nature of
the Cooper pair [1–4]†. It has two phases of different symmetric properties, A and B, with
no magnetic field, and they are identified with the Anderson–Morel (ABM) and the Balian–
Werthamer phases (BW) [5, 6]. Because of the p-wave nature of the interaction, the order
parameter of He3 is described by the vector field9µi with the orbital and spin vector indices
(µ, i = 1, 2, 3) in contrast to the ordinary superfluid He4 or s-wave superconductor with
the scalar order parameterψ . The p-wave nature is specifically revealed in the so-called
anisotropic ‘l-texture’ of He3-A, where the order parameter is characterized by a special
direction represented by thel-vector (and alsod-vector in spin direction). In contrast to He3-
A, the B phase is isotropic and has no such special direction, but it reveals some specific
features that cannot be expected for the conventional superfluid.

These characteristic properties of the A and B phases of the superfluid He3 show up in the
symmetry breaking patterns [2]. The superfluid He3 has both pure orbital and spin rotation
symmetriesSOl(3)×SOs(3) and theU(1) gauge symmetry because of the small spin–orbital
coupling. In the A phase, this symmetry is broken and the manifold of the internal degeneracy
becomesRA = (S2 × SO(3))/Z2, whereS2 is a two-dimensional sphere for thed-vector
andSO(3) for the solid rotation for thel-texture. In the B phase, the degeneracy manifold
becomesRB = S1× SOa(3): S1 ' U(1) is the phase degree of freedom andSOa(3) denotes
the relative spin-to-orbital rotation.

As pointed by Volovik [2], the symmetry mentioned above is very similar to the chiral
symmetrySUL(2) × SUR(2) for the quark in quantum chromodynamics (QCD). In the non-
perturbative region of QCD, the chiral symmetry is considered to be broken into the isospin

† For reviews of the superfluid He3, see [1].
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symmetrySUV (2) and the degeneracy manifold becomes the axialSUA(2)†. The dynamical
origin of this symmetry breaking in QCD is still not clear, but a lot of low-energy hadronic
properties can be explained as the low-energy theorem for this chiral symmetry breaking.
When we consider the two-value equivalenceSO(3) ∼ SU(2)/Z2, the He3 symmetry
SOl(3) × SOs(3) is equivalent to the chiral symmetrySUL(2) × SUR(2), and, for the B
phase, the symmetry breaking pattern is the same as the vacuum of QCD [7]. Because of that
symmetry breaking pattern, the low-energy effective theory of QCD is known to be reduced
to theSU(2) nonlinear (NL)σ model with theSU(2)-matrix fieldU(x) as the elementary
degrees of freedom [8–10].

The similarity between the superfluid He3-B and the chiral symmetries suggests that the
superfluid He3-B can be described by using theSU(2) NL σ model and some topological
properties of it can be derived from those of theSU(2) group. The similarity in the
symmetry breaking structure also exists between the He3-A and the Weinberg–Salam model
for the electroweak interactions [2], whereSUW(2) × UY (1) symmetry is broken down to
Ucomb(1): the combined symmetry with eiθτ3 andUY (1). Thus the residual manifold becomes
RWS = SUW(2)×UY (1)/Ucomb(1)which is equivalent toRA in the He3-A with the two-value
equivalenceSO(3) ∼ SU(2)/Z2.

The purpose of this paper is to give a unified construction of the effective field Lagrangian
for both superfluid He3-A and B phases in terms of the language of theSU(2) NL σ model.
The essence of our approach is based on the following two points. (a) The order parameter for
He3-A and B is realized by rotating some initial vector, which accommodates the symmetry
breaking. (b) The starting Landau–Ginzburg Lagrangian is given by a generalized version of
the NL Schr̈odinger form which has been used for the ordinary superfluid written in terms of
the scalar order parameter [11–13], that is

L =
∫ [

1
2i(9∗9̇ − c.c.)− 1

2m
|∇9|2 − V (|9|)

]
d2x (1)

wherem is twice the effective mass of the He3 atom andV (|8|) is the potential for the order
parameter9 = (9µi).

This paper is organized as follows. In the next section, we give a general construction of the
NL representation for the order parameter of superfluid He3 including ABM and BW as special
cases. In section 3, we consider the explicit form for the effective Lagrangian of the superfluid
He3-A and B, respectively, with replacing the order parameter9 by the unitary fieldU(x).
Some discussions for the topological properties are also given with that NL representation in
the final section.

2. Nonlinear representation for the order parameter

2.1. Order parameter decomposition

The order parameter of He3 represented by the 3× 3 matrix field,9(x) = (9µi(x)), can be
divided as9(x) = φ(x)R(x) whereR(x) ∈ SO(3) andφ(x) represents a 3× 3 Hermite
matrix whose eigenvalues are positive or zero (polar or Iwasawa decomposition) [14]. The
matrix fieldφ(x) plays the same role as the density scalar fieldρ(x) in the Ginzburg–Landau
theory for He4 and its explicit form should be specified later for each phase of He3. As the

† For chiral symmetry breaking in QCD, see [7].
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effective Lagrangian, we consider the canonical termLC , the kinetic termT and the potential
termV :

LC = 1
2ih̄Tr(9†9̇ − 9̇†9) T = − h̄

2

2m
|∂9|2 V = V (|9|2). (2)

To rewrite (2) withφ andR, we use

Tr9†9̇ = TrR†φ†{φ̇R + φṘ} = Tr φ†φ̇ + Tr gṘR† (3a)

Tr 9̇†9 = Tr{φ̇†R† + φ†Ṙ†}φR = Tr φ̇†φ − Tr gṘR† (3b)

|∂9|2 = Tr ∂9†∂9 = |∂φ|2 + Tr g∂R∂R†− 2 Tr(φ†∂φ)(∂RR†) (3c)

|9|2 = Tr9†9 = |φ|2 (3d)

whereg(x) = φ†(x) φ(x) plays the role of the metric field for the spin indices (andφ is
the corresponding ‘dreibein’ field). By substituting equations (3a)–(3d) and (4a) into (2), we
obtain

LC = 1
2ih̄Tr(φ†φ̇ − φ̇†φ) + ih̄Tr gṘR† (4a)

T = − h̄
2

2m
|∂φ|2 − h̄2

2m
Tr g∂R∂R† +

h̄2

m
Tr(φ†∂φ)(∂RR†) (4b)

V = V (|φ|2). (4c)

The second term in equation (4b) can be rewritten as

Tr g∂R∂R† = −Tr g(∂RR†)2 (5)

thus theR(x) field appears only in the form dRR† in the effective Lagrangian.

2.2. Unitary field description

To transform the effective Lagrangian (4a)–(4c) into the form of theSU(2) NL σ model, we
use the relation

Rai = 1
2 TrU†τaUτi = 1

2 Tr τaUτiU
† (6)

whereU = U(x) ∈ SU(2) is a unitary matrix field andτa is the Pauli matrix. Equation (6)
represents the two-valued equivalenceSO(3) ' SU(2)/Z2. Using equation (6),∂R R†

becomes†

(∂µRR
†)ab = 2Lαµεαab (7)

whereLαµ is the Maurer–Cartan form ofSU(2):

dU U† = iLαµτα dxµ. (8)

Substituting equation (7) into equations (4a)– (4c), we obtain the general form of the
effective Lagrangian in theSU(2) NL σ form:

LC = 1
2ih̄Tr(φ†φ̇ − φ̇†φ)− ih̄Aα(g)L

α
0 (9a)

T = − h̄
2

2m
|∂φ|2 − 2h̄2

m

[
ρ(Lai )

2 − gabLai Lbi
]− h̄2

m
Aα(φ

†∂iφ)L
α
i (9b)

V = V (|φ|2) (9c)

† See appendix A for the derivations of equations (7) and (9a)–(9c).



7370 H Yabu and H Kuratsuji

whereρ(x) = Tr g(x) andAα is the operation for the Hodge-star operator [15] defined by

Aα(M) = 1
2εαabMab (10)

for any 3× 3 matrices. It should be noticed that the term(Lai )
2 in (9b) gives nothing but the

canonical term in theSU(2) NL σ model:

(Laµ)
2 = 1

2 Tr ∂µU∂µU
†. (11)

3. Superfluid phases of He3

Following the general consideration of the group structure of the order parameter for the
superfluid He3, we shall derive the effective Lagrangian for the A and B phases, respectively.

3.1. Balian–Werthamer phase (BW)

The BW phase is the case whereφ(x) = 1B(x)I , whereI = (δij ) is a 3×3 unit matrix. Then
the quantities defined in section 2 are given by

g = |1B |2I ρ = 3|1B |2 φ†∂φ = 1∗B∂1BI A(g) = 0 A(φ†∂φ) = 0.

(12)

Using equation (12) for equations (9a)–(9c), we obtain the effective Lagrangian for the
BW-phase:

LC = 3
2ih̄(1∗B1̇B − 1̇∗B1B) (13a)

T = − 3
2ih̄|∂1B |2 − 4h̄2

m

3∑
a=1

(Lai )
2 (13b)

V = V (|1B |2). (13c)

For the uniform superfluid (∂1B = 0), the kinetic termT in equation (13b) is completely the
same as theSU(2) NL σ model:

T = −4h̄2

m

3∑
a=1

(Lai )
2 = 2h̄2

m
Tr ∂U∂U† (14)

which shows that the same symmetry breaking pattern as the chiral symmetry of QCD is
realized for the BW-phase of the superfluid He3.

3.2. Anderson–Morel phase (ABM)

The ABM phase can be described with the order parameter

9µi = 1Adµψi ψ = e−iγ (m + in) (15)

wherem andn are the orthogonal unit vectors parametrized by

tm = (cosβ cosα, cosβ sinα,− sinβ) tn = (− sinα, cosα, 0). (16)

It should be noticed thatψ can be written as

ψ = Rz(α)Ry(β)Rz(γ )v tv = (1, i,0) (17)
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whereRz andRy are the rotation matrices around thez andy axes:

Ry(β) =
 cosβ 0 sinβ

0 1 0
− sinβ 0 cosβ

 Rz(α) =
 cosα − sinα 0

sinα cosα 0
0 0 1

. (18)

In the derivation of equation (17), we have used the special property ofv under the gauge
symmetry e−iγv = Rz(γ )v. The rotation matrixRz(α)Ry(β)Rz(γ ) in (17) just gives the
Euler-angle representation of theSO(3) element [16], so that the ABM phase can also be
represented in our formalism:φ = d ⊗1Av = 1A(d ⊗ v) andR = (Rz(α)Ry(β)Rz(γ ))†.
Then we obtain

g = |1A|2v†⊗ v ρ = 2|1A|2 A(g) = i|1A|2δ3,α (19)

where

v†⊗ v =
 1 i 0
−i 1 0
0 0 0

. (20)

Using equation (19), we obtain the effective Lagrangian for the ABM phase:

LC = ih̄(1∗A∂1A − ∂1∗A1A)− h̄|1A|2L3
0 (21a)

T = − h̄
2

m
|∂(1Ad)|2 − 2h̄2

m
|1A|2[(L1

i )
2 + (L2

i )
2 + 2(L3

i )
2] − ih̄2

m
(1∗A∂i1A)L

3
i (21b)

V = V (|1A|). (21c)

For the uniform superfluid, equations (21a) and (21b) give

LC = −h̄|1A|2L3
0 T = −2h̄2

m
|1A|2[(L1

i )
2 + (L2

i )
2 + 2(L2

i )
2] (22)

where the second term ofT shows the asymmetry for thez-direction in the ABM-phase and
the second term ofLC is the same Wess–Zumino term [17] that was discussed for the system
of an electron around a magnetic monopole [18] and in theSU(3) Skyrme model [19]†.

We should also mention the similarity and the differences between the ABM phase and the
Weinberg–Salam model here. The Higgs fieldφ = (φ1, φ2) of the Weinberg–Salam model is
invariant underSU(2)× U(1) symmetry. For the normal vacuum, this field is spontaneously
broken intoφ0 = (0, v) that has a similar gauge symmetry e−iγ φ0 = ei(γ /2)τ3φ0 to the ABM
phase of the superfluid He3. However, because of the different spin magnitudes (1 for the ABM
phase and12 for the Weinberg–Salam model) and the existence of the gauge field and the Higgs
mechanism in the Weinberg–Salam theory, the nonlinear sigma model for the Weinberg–Salam
model becomes somewhat different from (22).

4. Topological quantities

In this section, we take a typical example that reveals the topological properties of the superfluid
He3. This feature shows up naturally in the NL representation of the effective Lagrangian.

The most fundamental topological quantities ofSU(2) are the left and right Maurer–
Cartan forms:

dU U† = iLaτa = iLai dθiτa U† dU = iRaτa = iRai dθi τa (23)

† The Wess–Zumino term has also been discussed in the superfluid He3 about the vortex motion [4, 20–22]. See also
[23].
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whereU ∈ SU(2). Let us consider the ABM-phase, and the rotation matrix fieldR is
parametrized asR(α, β, γ ) = (Rz(α)Ry(β)Rz(γ ))

† = Rz(−γ )Ry(−β)Rz(−α), consistent
with equation (17). By carrying out a direct calculation using equation (6), the unitary
matrix corresponding toR(α, β, γ ) is shown to beU(α, β, γ ) = Uz(−γ )Uy(−β)Uz(−α)
and, this is just the Euler angle parametrization of the rotation matrix. With this Euler angle
parametrization, the Maurer–Cartan forms are given by†

L1 = 1
2i[sin γ dβ − sinβ cosγ dα] (24a)

L2 = 1
2i[cosγ dβ + sinβ sinγ dα] (24b)

L3 = 1
2i[dγ + cosβ dα] (24c)

together with

R1 = 1
2i[sin α dβ − sinβ cosα dγ ] (25a)

R2 = 1
2i[− cosα dβ − sinβ sinα dγ ] (25b)

R3 = 1
2i[dα + cosβ dγ ]. (25c)

To discuss the physical interpretation, we consider the symmetry of the ABM-phase. As
is clear from equations (21a)–(21c), the effective Lagrangian for the ABM-phase is invariant
under the limited chiral symmetries:

UL(1): U(α, β, γ ) −→ Uz(θ)R(α, β, γ ) (26a)

SUR(2): U(α, β, γ ) −→ U(α, β, γ )g† (26b)

whereg ∈ SU(2). SUL(2) corresponds to the orbital rotation symmetrySOl(3), andUR(1) to
the gauge symmetry, so that the invariance of the Lagrangian under these symmetries is clear
physically. The conserved currents for these symmetries can be calculated using Noether’s
theorem, and we obtainL3

i for UL(1) andRai for SUR(2). L3
i is just the current for the gauge

transformation of the order parameter, so it should be proportional to the superfluid velocity.
Using equation (24c) and properly fixed constants, the explicit form of this becomes

v = − h̄
m
L3 = − h̄

2m
(∇γ + cosβ∇α). (27)

This is just the superfluid velocity given by Mermin and Ho [24]. The vorticityω = dv is
given by

ω = h̄

m
Tr τ3L

2 (28)

where the Maurer–Cartan relation dL− L2 = 0 has been used.

5. Summary

We have shown that the effective Lagrangian of the superfluid He3 can be represented in terms
of theSU(2) NL σ model for any phases in a unified manner. In particular, we have given the
explicit form of the Lagrangian for the ABM and BW phases. The topological structures of the
superfluid He3 can be related to the topological properties ofSU(2) in this representation. As
one example, we have shown that the Mermin–Ho velocity can be understood as the Maurer–
Cartan form ofSU(2). The topological properties of the superfluid He3 typically appear in
vortices [4, 22]. Thus, it will be interesting to study the role of topological properties for the
motion of superfluid vortices with theSU(2) representation developed in this paper.

† See appendix B for a derivation of equations (24a)–(24c) and (25a)–(25c).
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Appendix A. Derivation of Maurer–Cartan-form representation

Using equation (6), we can easily obtain

Raiτi = U†τaU Raiτa = UτiU†. (A1)

Let us calculate the∂RR†. The differentiation of equation (A1) gives

∂Raiτi = ∂U†τaU +U†τa∂U. (A2)

Multiplying equation (A2) byU andU† from both sides, we obtain

∂RaiRbiτb = ∂RaiUτiU† = [τa, ∂UU
†] (A3)

where∂UU† +U∂U† = 0 has been used. The Maurer–Cartan formLaµ for U is defined by

dU U† = iLαµτα dxµ. (A4)

On substituting equation (A4) into (A3), we obtain equation (7):

(∂µRR
†)ab = 2Lαµεαab. (A5)

The derivations of equations (9a)–(9c), can be done easily with the formulae

Tr gṘR† = gab(ṘR†)ba = −2εαabgabL
α
0 = −Aα(g)Lα0 (A6a)

Tr g∂R∂R† = −gab(∂RR†)bc(∂RR
†)ca = −4εαbcεβcaL

α
i L

β

i = 4ηLai L
a
i − 4gabL

a
i L

b
i (A6b)

Tr(φ†∂φ)(∂RR†) = −2εαab(φ
†∂iφ)abL

α
i = −Aα(φ†∂iφ)L

α
i (A6c)

whereρ = Tr g andAα is the operation for the Hodge-star operator and is defined by
equation (10).

Appendix B. Euler-angle representation of the Maurer–Cartan form

The unitary transformation corresponding toRi(θ) is

Ui(θ) = e−
1
2 iθτi = cos1

2θ + iτi sin 1
2θ (B1)

which can be checked directly using equation (6). Differentiating the Euler-angle
representationU(α, β, γ ) = Uz(−γ )Uy(−β)Uz(−α), we obtain

dU = dUz(−γ )Uy(−β)Uz(−α) +Uz(−γ ) dUy(−β)Uz(−α) +Uz(−γ )Uy(−β) dUz(−α)
(B2)

so that

dU U† = dUz(−γ )U†
z (−γ ) +Uz(−γ )[dUy(−β)U†

y (−β)]U†
z (−γ )

+Uz(−γ )Uy(−β)[dUz(−α)U†
z (−α)]U†

y (−β)U†
z (−γ ). (B3)

For the evaluation of equation (B3), we use

dUi(−θ)U†
i (−θ) = 1

2i dθ τi (B4)

and

Uz(−γ )τ2U
†
z (−γ ) = cosγ τ2 + sinγ τ3 (B5a)

Uz(−γ )Uy(−β)τ3U
†
y (−β)U†

y (−γ ) = − cosγ sinβτ1 + sinγ sinβτ2 + cosβτ3. (B5b)

Calculating equation (B5a) directly, we obtain the left Maurer–Cartan formLa in
equations (24a)–(24c). The right Maurer–Cartan form in equations (25a)–(25b) is also
calculated in a similar way.
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